Randolph Township Schools Randolph Middle School

Robotics II Curriculum

Department of Science, Technology, Engineering, and Math Anne Vitale Richardson Supervisor

> Curriculum Committee Ned Sheehy Nick Lavender

> **Curriculum Developed:** July 2016

Date of Board Approval:

Randolph Township Schools Department of Science, Technology, Engineering, and Mathematics Robotics II

Table of Contents

Section	Page(s)
Mission Statement and Education Goals – District	3
Affirmative Action Compliance Statement	3
Educational Goals – District	4
Introduction	5
Curriculum Pacing Chart	6
	1.5
APPENDIX A	15

Randolph Township Schools

Mission Statement

We commit to inspiring and empowering all students in Randolph schools to reach their full potential as unique, responsible and educated members of a global society.

Randolph Township Schools Affirmative Action Statement

Equality and Equity in Curriculum

The Randolph Township School district ensures that the district's curriculum and instruction are aligned to the state's standards. The curriculum provides equity in instruction, educational programs and provides all students the opportunity to interact positively with others regardless of race, creed, color, national origin, ancestry, age, marital status, affectional or sexual orientation, gender, religion, disability or socioeconomic status.

N.J.A.C. 6A:7-1.7(b): Section 504, Rehabilitation Act of 1973; N.J.S.A. 10:5; Title IX, Education Amendments of 1972

RANDOLPH TOWNSHIP BOARD OF EDUCATION EDUCATIONAL GOALS VALUES IN EDUCATION

The statements represent the beliefs and values regarding our educational system. Education is the key to self-actualization, which is realized through achievement and self-respect. We believe our entire system must not only represent these values, but also demonstrate them in all that we do as a school system.

We believe:

- The needs of the child come first
- Mutual respect and trust are the cornerstones of a learning community
- The learning community consists of students, educators, parents, administrators, educational support personnel, the community and Board of Education members
- A successful learning community communicates honestly and openly in a non-threatening environment
- Members of our learning community have different needs at different times. There is openness to the challenge of meeting those needs in professional and supportive ways
- Assessment of professionals (i.e., educators, administrators and educational support personnel) is a dynamic process that requires review and revision based on evolving research, practices and experiences
- Development of desired capabilities comes in stages and is achieved through hard work, reflection and ongoing growth

Randolph Township Schools Department of Science, Technology, Engineering, and Mathematics Robotics II

Introduction

Robotics II will immerse students in activities that allow them to apply skills obtained in Robotics I. This is accomplished by providing problem-based learning lessons that expose students to real-world conditions. This learning approach creates a student-centered environment by providing a *learning by doing* setting which is the focal point of educational robotics. This program focuses on transferable skills and stresses understanding and demonstration of the science and mathematical knowledge, technological tools, machines, materials, processes and systems related to robotics. Robotics II provides opportunities for realistic high-tech interdisciplinary application of content students can relate to their lives. Through teamwork, students solve increasingly complex problems, cumulating with a project in which they apply all the skills obtained in previous units. Students are encouraged to take possession of their tasks and will feel empowered solving real-world problems they have chosen. This curriculum is based on building to learn. Robotics provides the means to apply this type of environment.

RANDOLPH TOWNSHIP SCHOOL DISTRICT Curriculum Pacing Chart Robotics II

SUGGESTED TIME ALLOTMENT	UNIT NUMBER	CONTENT - UNIT OF STUDY
2 weeks	Ι	Hazardous Waste Design Challenge
2 weeks	II	Obstacle Course Olympics
2 weeks	III	Robot Athletics: Bluetooth Connectivity
3 weeks	IV	Mars Land Surveyor

RANDOLPH TOWNSHIP SCHOOL DISTRICT

STANDARDS / GOALS: 8.1.8.A.1	ENDURING UNDERSTANDINGS	ESSENTIAL QUESTIONS
Demonstrate knowledge of a real world problem using digital tools. 8.1.8.A.4 Graph and calculate data within a spreadsheet	Students can control their physical environment by coding software to manipulate a robot.	• How can the coding of software effect the environment around you?
and present a summary of the results 8.2.8.A.2 Examine a system, consider how each part relates to other parts, and discuss a part to redesign to improve the system. 8.2.8.B.2	Autonomous robots protect humans from harmful conditions (i.e hazardous waste conditions, bomb disposal, etc).	• Under what conditions should research be conducted for the development of robots to perform a task rather than a human?
Identify the desired and undesired consequences from the use of a product or system. 8.2.8.D.1 Design and create a product that addresses a real world problem using a design process	KNOWLEDGE	SKILLS
8.2.8.D.1	Students will know: Robotics has the ability to change the environment around us. How to code robots to sort items by color distinction and properly execute robotic commands. Gear ratios and their implementation to actuators. Different types of hazardous waste such as paints, automotive wastes, electronics, etc. VOCABULARY: Hazardous waste, actuator	Students will be able to:Research, design, build, code, and test a robotthat will sort hazardous chemicals that have beendiscovered in an abandoned factory.Progress through a self-paced challenge tomaster certain programming functions.Construct robots that include gears and sensors.Describe the effects of robotics on society.

	KEY TERMS: Color assortment, gear ratios	
ASSESSMENT EVIDENCE: Student • See Appendix A	s will show their learning by:	

Robotics II UNIT I: Hazardous Waste Design Challenge

RANDOLPH TOWNSHIP SCHOOL DISTRICT

Robotics 2 UNIT I: Hazardous Waste Design Challenge

SUGGESTED TIME ALLOTMENT	CONTENT-UNIT OF STUDY	SUPPLEMENTAL UNIT RESOURCES
2 Weeks	UNIT I: Hazardous Waste Design Challenge Research of Autonomous Robots Design and construct autonomous robots What is Hazardous Waste?	BOOKS: None Required Readings taken from various relevant sources. Suggested Supplies:
	Create code that sorts objects by color distinction Hazardous Waste Design Challenge	Computers Programs such as Microsoft Word, PowerPoint, and Excel Open Source and Web 2.0 Applications NXT, EV3 and VEX robot kits. <u>Suggested Activities:</u> Research Parts definition
		Hazardous Waste Design Challenge

EDUCATION EXHIBIT 12 – 8/16/16

RANDOLPH TOWNSHIP SCHOOL DISTRICT Robotics II

STANDARDS / GOALS: 8.1.8.A.1	ENDURING UNDERSTANDINGS	ESSENTIAL QUESTIONS
Demonstrate knowledge of a real world problem using digital tools. 8.1.8.A.4 Graph and calculate data within a	Input sensors provide data about the environment in which robots reside.	How can software be coded that will modify the robots functions based on the data received from the sensor?
spreadsheet and present a summary of the results 8.2.8.A.2 Examine a system, consider how each part	Mobility over various terrain is crucial for robots to perform specific tasks.	How does limited mobility effect both robot and human's ability to function as designed?
relates to other parts, and discuss a part to redesign to improve the system. 8.2.8.B.2	Robots are designed to function properly on multiple terrain surfaces.	How can you design a robot to travel more efficiently over various terrains?
Identify the desired and undesired consequences from the use of a product or system. 8.2.8.D.1	KNOWLEDGE	SKILLS
Design and create a product that addresses a real world problem using a design process under specific constraints. 8.2.8.D.3 Build a prototype that meets a STEM-	Students will know: Different sensors (touch, ultrasonic, color, gyro sensors) can interact with the physical environment.	Students will be able to: Research, design, construct, code, and test a robot that will travel though a course using sensors to go around or remove obstacles
based design challenge using science, engineering, and math principles that validate a solution. 8.2.8.E.4	Robots can be designed and constructed to utilize different methods of mobility.	Code software programed to perform different tasks.
Use appropriate terms in conversation (e.g., programming, language, data, RAM, ROM, Boolean logic terms).	Topography (terrain) can affect how robots are designed and how they function.	Develop robots that can successfully function on multiple terrains.
CCSS.ELA-LITERACY.RST.6-8.3 Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.	VOCABULARY: Topography, terrain, mobility, sensors KEY TERMS:	

ASSESSMENT EVIDENCE: Students will show their learning by:

• See Appendix A

RANDOLPH TOWNSHIP SCHOOL DISTRICT Robotics II Unit II: Obstacle Course Olympics

SUGGESTED TIME ALLOTMENT	CONTENT-UNIT OF STUDY	SUPPLEMENTAL UNIT RESOURCES
2 Weeks	Unit II: Obstacle Course Olympics Sensor installation Software modification using sensors How topography affects mobility Obstacle Course Olympics	<u>BOOKS:</u> None Required Readings taken from various relevant sources. <u>Suggested Supplies:</u> Computers Programs such as Microsoft Word, PowerPoint, and Excel Open Source and Web 2.0 Applications NXT, EV3 and VEX robot kits. <u>Suggested Activities:</u> Obstacle Course Olympics

RANDOLPH TOWNSHIP SCHOOL DISTRICT

STANDARDS / GOALS: 8.1.8.A.1	ENDURING UNDERSTANDINGS	ESSENTIAL QUESTIONS
Demonstrate knowledge of a real world problem using digital tools. 8.1.8.A.4 Graph and calculate data within a	Wi-Fi and Bluetooth are different standards for wireless communication.	How does Wi-Fi connection and Bluetooth connectivity compare?
spreadsheet and present a summary of the results 8.2.8.A.2 Examine a system, consider how each part relates to other parts, and discuss a part to	Pairing two or more devices allows for control of robots remotely.	• Explain how you can use Bluetooth to pair multiple devices to control robots remotely.
redesign to improve the system. 8.2.8.B.2 Identify the desired and undesired consequences from the use of a product or	Technology allows for communication and control to take place over long distances.	• How can technology be used to reach people or objects over long distances?
system.8.2.8.D.1Design and create a product that addresses	KNOWLEDGE	SKILLS
a real world problem using a design process under specific constraints. 8.2.8.D.3 Build a prototype that meets a STEM- based design challenge using science, engineering, and math principles that	Students will know: How to pair various devices via blue tooth.	Students will be able to: Create various robots to compete in athletic activities while controlling their robot using their personal devices via blue tooth.
validate a solution. 8.2.8.E.4 Use appropriate terms in conversation (e.g., programming, language, data, RAM, ROM, Boolean logic terms).	How to create code to customize the layout on their device screen to the functions the robot executes.	Research, design, construct, code, and test a robot competed in multiple athletic events against other robots created by students.
<u>CCSS.ELA-LITERACY.RST.6-8.3</u> Follow precisely a multistep procedure	How to design and construct an environment that facilitates communication over long distances.	Develop a means of communication between two devices over a long distance.
when carrying out experiments, taking measurements, or performing technical tasks.	VOCABULARY: Pairing, Wi-Fi, Bluetooth	
	KEY TERMS: Bluetooth Connectivity, technological	EDUCATION EXHIBIT 12 8/16/16

	communication	
ASSESSMENT EVIDENCE: Stude • See Appendix A	ents will show their learning by:	
Robotics II		

Robotics II UNIT III: Robot Athletics: Bluetooth Connectivity

RANDOLPH TOWNSHIP SCHOOL DISTRICT

Robotics II Unit III: Robot Athletics: Bluetooth Connectivity

SUGGESTED TIME ALLOTMENT	CONTENT-UNIT OF STUDY	SUPPLEMENTAL UNIT RESOURCES
2 Weeks	Unit III: Robot Athletics: Bluetooth Connectivity Understanding the difference between Wi-Fi and Bluetooth connections Pairing devices via Bluetooth Establishing long range communication environments Robot Athletics	BOOKS: None Required Readings taken from various relevant sources. <u>Suggested Supplies:</u> Computers Programs such as Microsoft Word, PowerPoint, and Excel Open Source and Web 2.0 Applications NXT, EV3 and VEX robot kits. <u>Suggested Activities:</u> Robot Golf Robot Golf Robot Soccer Robot Jousting Robot Hockey

RANDOLPH TOWNSHIP SCHOOL DISTRICT Robotics II UNIT IV: Mars Land Surveyor

STANDARDS / GOALS: 8.1.8.A.1 Demonstrate knowledge of a real world problem using digital tools. 8.1.8.A.4 Graph and calculate data within a spreadsheet and present a summary of the results 8.2.8.A.2 Examine a system, consider how each part	ENDURING UNDERSTANDINGS Scientists and Engineers need to consider the environment and conditions in which they are working when designing equipment.	 ESSENTIAL QUESTIONS How can surveying Mars' landscape benefit our lives on Earth? Explain how the specifications and individual characteristics of an environment effect the manner in which you conduct research, design, build, and
relates to other parts, and discuss a part to redesign to improve the system. 8.2.8.B.2 Identify the desired and undesired consequences from the use of a product or	Students have the power to shape the future by developing new technologies that will benefit our society.	 test a robot. How can we use technology to further explore unknown frontier on Earth?
system. 8.2.8.D.1 Design and create a product that addresses a real world problem using a design process under specific constraints.	Through the combination of hardware and software, robots can sense their environment, make decisions, and perform different tasks based on information received from input data.	• How can robots be used to perform tasks and solve problems?
8.2.8.D.3 Build a prototype that meets a STEM-	KNOWLEDGE	SKILLS
based design challenge using science, engineering, and math principles that validate a solution. 8.2.8.E.4 Use appropriate terms in conversation (e.g., programming, language, data, RAM, ROM, Boolean logic terms). <u>CCSS.ELA-LITERACY.RST.6-8.3</u> Follow precisely a multistep procedure	Students will know:Appropriate navigation of their robot through severaldifferent geological sections.Research, construction, and coding multifunction robotsthat use multiple sensors, make various decisions, andperform an assortment of tasks.	Students will be able to: Utilize the Engineering Design Process to develop solutions for student-designed problem. Apply current technical knowledge to their design of a robot.
when carrying out experiments, taking measurements, or performing technical tasks.	Pairing, mobility, and proper execution of robotic commands. Stop and load minerals into robot cargo bay.	Evaluate their project and modify it as needed. Locate "RANtrium" mineral using various sensors.

	VOCABULARY: surveying, navigation	
ASSESSMENT EVIDENCE: StudSee Appendix A	ents will show their learning by:	

RANDOLPH TOWNSHIP SCHOOL DISTRICT Robotics II Unit IV: Mars Land Surveyor

SUGGESTED TIME ALLOTMENT	CONTENT-UNIT OF STUDY	SUPPLEMENTAL UNIT RESOURCES
3 Weeks	Unit IV: Mars Land Surveyor Use the engineering design method to solve multiple	<u>BOOKS:</u> None Required Readings taken from various relevant sources.
	problems simultaneously to accomplishing a task.	Suggested Supplies:
	Design the hardware to solve multiple problems based on information received from multiple sensors	Computers Programs such as Microsoft Word, PowerPoint, and Excel Open Source and Web 2.0 Applications
	Design the software to solve multiple problems based on information received from multiple sensors	NXT, EV3 and VEX robot kits. Suggested Activities:
	Mars Land Surveyor	Mars Land Surveyor

APPENDIX A

UNIT I: Hazardous Waste Design Challenge

	3	2	1	0
Research	Student obtained plans	Student obtained plans	Student obtained	Student was unable to
	that thoroughly	that demonstrated	incomplete plans that	find plans.
	demonstrated how the	how the robot will	demonstrates how the	
	robot will move,	move, detect	robot will move,	
	detect containers,	containers, identify	detect containers,	
	identify color, capture	color, capture	identify color, capture	
	container and move it	container and move it	container and move it	
	to the proper location.	to the proper location.	to the proper location.	
Design	Student exceeded	Student met design	Student created an	Student was unable to
	design constraints of	constraints of how the	incomplete design of	create a design
	how the robot will	robot will move,	how the robot will	
	move, detect	detect containers,	move, detect	
	containers, identify	identify color, capture	containers, identify	
	color, capture	container and move it	color, capture	
	container and move it	to the proper location.	container and move it	
	to the proper location.		to the proper location.	
Construct	Student constructed a	Student constructed a	Student constructed a	Student did not create
	robot that moves,	robot that completes	robot completes at	a robot.
	detects containers,	three out of four.	least two functions.	
	identifies color,			
	captures container and			
	moves it to the proper			
	location.			
Code	Student coded a	Student coded a robot	Student coded a robot	Student did not create
	program that moves,	that completes three	that completes two out	code.
	detects containers,	out of four.	of four.	
	identifies color,			
	captures container and			
	moves it to the proper			
	location.			
Test	Student tested their	Student tested a robot	Student teste a robot	Student did not test.
	robot to insure that it	that completes three	that completes two out	
	moves, detects	out of four.	of four.	
	containers, identifies			
	color, captures			
	container and moves it			
	to the proper location.			

Unit II: Obstacle Course Olympics

	3	2	1	0
Research	Student obtained plans that thoroughly demonstrated how the robot will move through different terrains, and detect objects of different sizes, shapes and colors.	Student obtained plans that demonstrated how the robot will move through different terrains, and detect objects of different sizes, shapes and colors.	Student obtained incomplete plans that thoroughly demonstrated how the robot will move through different terrains, and detect objects of different sizes, shapes and colors.	Student was unable to find plans.
Design	Student exceeded design constraints that will move through different terrains, and detect objects of different sizes, shapes and colors.	Student met design constraints that will move through different terrains, and detect objects of different sizes, shapes and colors.	Student incompletely created a design that will move through different terrains, and detect objects of different sizes, shapes and colors.	Student was unable to create a design
Construct	Student constructed a robot that will move through different terrains, and detect objects of different sizes, shapes and colors.	Student constructed a robot that completes three out of four.	Student constructed a robot completes at least two functions.	Student did not create a robot.
Code	Student coded a robot that will move through different terrains, and detect objects of different sizes, shapes and colors.	Student coded a robot that completes three out of four.	Student coded a robot that completes two out of four.	Student did not create code.
Test	Student tested a robot that moves through different terrains, and detects objects of different sizes, shapes and colors.	Student tested a robot that completes three out of four.	Student teste a robot that completes two out of four.	Student did not test.

UNIT III: Robot Athletics: Bluetooth Connectivity

	3	2	1	0
Research	Student obtained plans that thoroughly	Student obtained plans that demonstrated how	Student obtained plans that incompletely	Student was unable to find plans.
	demonstrated how the robot will effectively compete in the athletic	the robot will effectively compete in the athletic competition.	demonstrated how the robot will effectively compete in the athletic	
	competition.	Ĩ	competition.	
Design	Student exceeded design constraints that will effectively compete in the athletic competition.	Student met design constraints that will effectively compete in the athletic competition.	Student incompletely created a design that will effectively compete in the athletic competition.	Student was unable to create a design
Construct	Student constructed a robot that will effectively compete in the athletic competition, pairs with their personal device, and has a proper screen layout.	Student constructed a robot that completes two out of three.	Student constructed a robot completes at least one function.	Student did not create a robot.
Test	Student tested a robot that effectively competes in the athletic competition, pairs with their personal device, and has a proper screen layout.	Student tested a robot that completes two out of three.	Student teste a robot that completes one function.	Student did not test.

Unit IV: Mars Land Surveyor

	3	2	1	0
Research	Student obtained	Student obtained	Student obtained	Student was unable
	plans that	plans that	plans that	to find plans.
	thoroughly	demonstrated how	incompletely	
	demonstrated how	the robot will	demonstrated how	
	the robot will	effectively navigate	the robot will	
	effectively navigate	the Mars surface	effectively navigate	
	the Mars surface	using their personal	the Mars surface	
	using their personal	device, detect	using their personal	
	device, detect	"RANitrium", and	device, detect	
	"RANitrium", and	finally load it.	"RANitrium", and	
	finally load it.		finally load it.	
Design	Student exceeded	Student met design	Student	Student was unable
	design constraints	constraints that will	incompletely	to create a design
	that will effectively	effectively navigate	created a design that	
	navigate the Mars	the Mars surface	will effectively	
	surface using their	using their personal	navigate the Mars	
	personal device,	device, detect	surface using their	
	detect	"RANitrium", and	personal device,	
	"RANitrium", and	finally load it.	detect	
	finally load it.		"RANitrium", and	
	-		finally load it.	
Construct	Student constructed	Student constructed	Student constructed	Student did not
	a robot that will	a robot that	a robot completes at	create a robot.
	effectively navigate	completes two out	least one function.	
	the Mars surface	of three.		
	using their personal			
	device, detect			
	"RANitrium", and			
	finally load it.			
Test	Student tested a	Student tested a	Student teste a robot	Student did not test.
	robot that	robot that completes	that completes one	
	effectively navigate	two out of three.	function.	
	the Mars surface			
	using their personal			
	device, detect			
	"RANitrium", and			
	finally load it.			